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APPLICATION OF CONTINUOUS KINETICS TO 
POLYMER DEGRADATION 

DIETER BROWARZIK* and ANNE KOCH 

Institute of Physical Chemistry 
Martin-Luther University Halle-Wittenberg 
06217 Merseburg, Germany 

ABSTRACT 

Degradation of polydisperse polymers is studied in the framework 
of continuous kinetics which is directly based on continuous distribution 
functions which depend on the molecular weight and the time. A first- 
order formalism is presumed. A Schulz-Flory distribution (with time- 
dependent parameters) is assumed to be valid during the entire time of 
degradation. Thus, an essential simplification of the solution procedure 
of the continuous rate equation is achieved. As a proof of accuracy, the 
approximation solution and the exact solution are compared for the case 
of “random scission.” Furthermore, the developed method is shown to 
be suitable for describing the experimental data of dextran degradation 
caused by acid hydrolysis, by ultrasonic irradiation, and by enzymatic 
attack. The model parameters fitted to the experimental data allow the 
evaluation of the scission probability as a function of the molecular 
weight and of the location of the bond to be broken within the molecule. 

INTRODUCTION 

Polydisperse polymers are composed of a large number of similar species, 
differing mainly in their molecular weights M. Therefore, the experimental charac- 
terization of polymers does not lead to the amounts of individual species but only 
to a continuous distribution function w(M).  This function is defined by the state- 
ment that w(M)dM gives the amount of substance of all species with molecular 
weights between the values M and M + dM. 
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BROWARZIK AND KOCH 

In analogy to continuous thermodynamics of polymers [ 1-41 also, the kinetic 
treatment of chemical reactions of polymers (such as polymer degradation) should 
be based on continuous distribution functions. In this treatment, called continuous 
kinetics, a continuous rate equation describes the evolution of the distribution func- 
tion (which additionally depends on the time t). 

Presuming all reactions involved to be first order and all occurring species to 
be of the same type, the continuous rate equation for the time-dependent distribu- 
tion function w(M,t) reads 

m 

K ( M ’ , M )  w(M’, t )  dM’ aw (M, t  1 
at = s, 

M 1 
2 

- - w(A4,t) lo K ( M , M ” )  dM” 

The rate function K(M’,M) is the continuous generalization of the rate con- 
stants in usual kinetics. It describes the breakage of a molecule with molecular 
weight M‘ into two molecules with molecular weights M and M‘ - M. The first 
term on the right-hand side of Eq. (1) describes the formation of molecules with 
molecular weight M by degradation of larger molecules. The second term describes 
the destruction of such molecules by splitting into smaller molecules. 

Equation (1) was written in 1958 by Saito [5], and as a limiting case of the 
coagulation-fragmentation equation (for a zero coagulation rate) was studied in 
1945 by Blatz and Tobolski [6]. A detailed derivation of Eq. (1) from usual kinetics 
was given by Kehlen, Ratzsch, and Bergmann [7]. 

There are a variety of mechanisms of polymer degradation, such as shear 
action, chemical attack, and nuclear, ultraviolet, and ultrasonic irradiation. Predic- 
tion of the evolution of molecular weight distribution during such a process is of 
great interest. The first work about polymer degradation dates back to Kuhn [8] in 
1930 and to Montroll and Simha [9] in 1940. These works were based on the case of 
“random scission”, assuming all bonds to be split with equal probability. In our 
notation that means K(M’,M) = constant. 

More recently, in the works by Basedow, Ebert, and Ederer [lo] and by 
Ballauf and Wolf [ 111, efforts were made considering the scission probability as a 
function of the length of the polymer chain and of the location of the bond to be 
split within the chain. However, explicit solutions were not found, and numerical 
solution by computer was very expensive. Experimental studies on polymer degrada- 
tion by Keller and Ode11 [12] and by Ballauf and Wolf [13] showed that in some 
cases the bonds in the middle of the chains break preferentially to those at the ends. 
The opposite case was found by Basedow, Ebert, and Ederer [ 101 in the degradation 
of dextran. Therefore, the function K(M’,M) will depend on the type of the polymer 
and on the type of degradation. 

In recent years an essential advantage in solving Eq. (1) has been reached by 
Ziff and McGrady [14-161. For some special functions of K(M’,M) they found 
explicit solutions of the continuous rate equation. However, for functions of 
K(M’,M) as they occur in practice, the exact solution of Eq. (1) is usually unknown. 

Recently, Williams [ 171 described a procedure to find general solutions of Eq. 
(1). At present, this very complicated method has not been demonstrated for a 
realistic case of K(M’,M).  
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CONTINUOUS KINETICS OF POLYMER DEGRADATION 1635 

Therefore, a less complicated approach to solve Eq. (1) for realistic functions 
of K(M',M) is needed. An approximation is developed here for this purpose. 

APPROXIMATION SOLUTION OF CONTINUOUS RATE EQUATION 

For a wide class of functions K(M',M) ,  an approximation solution of continu- 
ous rate Eq. (1) is possible by assuming that the type of distribution function is 
always the same. In this paper the method is demonstrated by using a Schulz-Flory 
distribution: 

In Eq. (2) the quantities n, M,,, and k are functions of time t. Here, n is the total 
amount of substance, a,, is the number-average molecular weight, and k is given by 

k ( t )  = l / U ( t ) ;  U ( t )  = M,(t)/[M,(t) - 11 (3)  

where U is the nonuniformity describing the breadth of the distribution and M, is 
the weight-average molecular weight. 

Introducing a general definition of moments of w(M,t) by 
m 

M ( ' ) ( t )  = lo M' w(M, t )  dM; r 2 0 (4) 

the quantities n( t ) ,  M,(t), and M,(t) may be expressed by 

( 5 )  
- M y  t )  - M y  t )  

M'O'( t ) '  M " ' ( t )  
n ( t )  = M'O' ( t ) ;  M , ( t )  = - . M , ( t )  = - 

According to Eq. (2), the time dependence of the distribution function is 
reduced to the time dependence of the total amount of substance n and of the 
parameters a, and k. 

Although the method may be applied to numerous complicated expressions of 
K(M',M),  here it is restricted to 

This three parameter relation seems to be very simple, but the corresponding exact 
solution of Eq. (1) is unknown. Despite its simplicity, Eq. ( 6 )  describes the scission 
probability in its dependence on the molecular weight of the polymer molecule and 
on the location of the bond to be broken within the molecule. If E > 0 ( E  < 0), a 
larger molecule is degraded more (less) rapidly than a smaller one. If /3 < 0, the 
bonds near the middle of a molecule break preferentially to those near the ends. If 
p > 0, the opposite case occurs. 

Using Eqs. ( l) ,  (4), and (6 ) ,  the relation 

can be verified. 
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1636 BROWARZIK AND KOCH 

Setting r = 1 ,  because of the conservation of mass during the reaction, &?(I)/ 

dt = 0 or n(t)M,(t) = constant is obtained. If Eq. (7) is additionally applied to r 
= 0 and r = 2 with the aid of Eqs. (3) and (9, the temporal changes of the 
number-average molecular weight a,, and of the nonuniformity U obey the rela- 
tions 

dM, a - _  - -  - - - ( 1  - @/6) M,M('+ l ) /n  dt 2 
- - M ( r + 3 )  a M ( E + l )  + - ( 1  - / 3 /6 ) (U  + 1 )  ___ 

a _ -  - - - ( 1  - / 3 / 5 )  ~ 

dU 
dt 6 n 2 n (9) 

Assuming the Schulz-Flory distribution given by Eq. (2), by using Eq. (4) the 
rth moment ( r  2 0) reads 

Introduction of Eq. (10) into Eqs. (8)  and (9) leads to 

where 

(13) = 1 - 3/3/20 

Combining Eqs. (1 1 )  and (12), the following relation, which allows the calculation 
of M, if U is known, is obtained: 

p/20 - E(l - / 3 / 5 )  l ( 1  - / 3 / 5 ) ( E  + 1 ) ( E  + 2 )  
2 1 - 3/3/20 ; 4 = -  

1' 1 - X,U(t) 1 - X,U(O) 
1 - A,U( t )  1 - X,U(O) 

a n ( t )  = Mn(O)[ 

where A, and X2 are solutions of a quadratic equation given by 

A, = -p/2 - 4 p c ;  x, = -p/2 + 4- ( 1  5 4  

and 6 is defined as 

The combination of Eqs. (12) and (14) results in a differential equation which 
permits the separation of the variables U and t. Thus, the solution reduces to a 
numerical integration. If U(t)  is known, direct calculation of M,( t )  based on Eq. 
(14) is possible. Because of the presumed validity of the Schulz-Flory distribution, 
the molar distribution function w(M,t)/n( t )  may also be determined. Considering 
the requirement n(t)ii?,(t) = constant, one can also easily calculate the function 

Finally, note that M,(t) and U(t)  change continuously with t where @,,(t) 
decreases with t. U(t )  decreases with t if U(0) > A, and U(t )  increases with t if U(0) 
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< A,. In the case where U(0) = A,, the function U(t) is a constant with respect to 
time t. Generally, U(t)  approaches the long time limit Um = A,; a maximum does 
not occur. 

PROOF OF APPROXIMATION 

To determine the accuracy of the previously introduced assumptions, a com- 
parison between the approximated and the exact distribution functions is necessary. 
For this reason, the case of “random scission” corresponding to K(M’,M) = a! was 
studied. The well known [7] exact solution of the continuous rate equation reads 

(16) 

In the framework of the introduced approximation, K(M’,M) = a! is obtained 

Applying Eq. (1) or Eq. (16) to an arbitrarily chosen distribution function 

m 

+ ( a f / 2 ) ,  j, (M’  - M )  w(M’,O) dM‘ 

by setting E = 0 and 

w(M,O), it is easy to show that the a, is governed by the simple equation 

= 0. 

l / M , ( t )  = l/M,(O) + ‘Yt 
2 

Using Eq. (1 1) with E = 0 and 
Furthermore, if w(M,O) is a Schulz-Flory distribution with k(0) = U(0) = 1, 

one can verify with the aid of Eq. (1) that w(M,t)  remains a Schulz-Flory distribu- 
tion with k(t)  = U(t)  = 1 for the entire time range. a,,(t) is given by Eq. (17). 
Introducing& = Oandp = OinEqs.(12)and(l3)(whichmeansp = 0,q = - l ) ,  
the approximation developed is verified to be exact if U(0) = 1. 

To give a more significant proof of the approximation, the approximated and 
the exact distribution functions W(@,r) are compared with respect to K(M’,M) = 
a for a special case [ w(M,O) is a Schulz-Flory distribution with k(0) = 0.2 or with 
U(0) = 51. Here, W(M,r) is the weight distribution function 

= 0, the approximation also results in Eq. (17). 

m 

W(@,T) = M,(O)  w(M, t )M/  lo w(M’,t)M’ dM‘ 

depending on the reduced molecular weight M and the reduced time T ,  where these 
dimensionless quantities are given by 

(19) 
a -  M = M/M,(O); 7 = - tM,(O) 
2 

In Fig. 1 the curves corresponding to the exact solution are based on Eq. (16) by 
solving the integrals numerically. The approximated curves are based on Eq. ( 2 )  
where %,(t) and k( t )  are calculated with the aid of Eqs. (3), (1 l), (12), and (13) by 
applying E = 0 and p = 0. In this case, analytical solutions are obtained. M,(t) 
fulfills Eq. (17) and k(f) obeys the relation 
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0.75 
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0.5 
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I' T.2 j'\ 

0 1 2 3 I 5 6 
63 

FIG. 1. Weight distribution function W(fi, 7) of some values of reduced time 7 
corresponding to an initial Schulz-Flory distribution with k(0) = 0.2 or U(0) = 5 : ( - )  
exact solution, (- - -) approximated solution. 

k ( 0 )  + 1 - [ k ( O )  - 11 

k ( 0 )  + 1 + [ k ( O )  - 11 
k ( ? )  = (20) 

Although the initial distribution is very broad, Fig. 1 shows only small differ- 
ences between the exact and the approximate solutions. During the reaction these 
differences first increase but later they decrease considerably, corresponding to a 
decrease of U. After a long time, U(t )  approaches the limit U,  = 1, i.e., the 
approximate solution and the exact solution coincide. 

On the whole, the developed approximation shows sufficient accuracy to jus- 
tify further application. 

APPLICATION TO DEXTRAN DEGRADATION 

The approach introduced by this paper may be applied to the degradation of 
polymers whose splitting products are of the same type as the polymer before 
degradation. Therefore, experimental data of dextran degradation ought to be suit- 
able for proving the accuracy of the developed approximation method. Fortunately, 
some experimental data for different types of dextran degradation are available. 
Degradation by acid hydrolysis was studied by Basedow, Ebert, and Ederer [lo], 
degradation by ultrasonic irradiation was investigated by Basedow and Ebert [ 181, 
and degradation by enzymatic attack was measured by Basedow [ 191. 

The acid hydrolysis [ 101 was carried out at 8OoC in 0.12 N sulfuric acid. The 
initial concentration of dextran [M,(O) = 117,000 g/mol; U(0)  = 0.291 was 1%. 
The molecular weight distributions were measured by GPC in a time range of 450 
minutes. 
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The degradation by ultrasonic irradiation [18] was carried out at 82OC in 
water and in 0.60 M phosphoric acid. Ultrasonic energy was applied by a generator 
operating at a frequency of 20 kHz and an intensity of 10 W/cm2. The initial 
concentration of dextran [M,(O) = 72,600 glmol; U(0) = 0.141 was 0.5 mg/mL. 
The molecular weight averages were determined by GPC in a time range of 60 
minutes. 

The degradation by enzymatic attack [ 191 was carried out at 25 OC in acetate 
buffer of pH 5.2 using an endo-dextranase (0.05 units/mL). The initial concentra- 
tion of dextran [M,(O) = 76,900 g/mol; U(0) = 0.141 was 1%. The molecular 
weight averages were measured by GPC in a time range of 100 minutes. 

Usually, the number-average a,, the weight-average M, and the z-average 
az of the molecular weight for various times were measured. Instead of M, and a,, - -  the nonuniformity U and the “combined polydispersity ratio” CPR = 
(M,M,) are often given (in some cases, only one of them). Presuming a Schulz- 
Flory distribution, CPR may be expressed by U according to CPR = ( 1  + w2/ 

With the aid of Eqs. (12)-(15), the parameters a, p, and E were fitted to the 
experimental data of M,(t) and U(t) ,  or of M,(t) and CPR(t) if U(t)  was not 
available. In this way, the parameter fit to experimental data of degradation by acid 
hydrolysis 1101 results in 

(1 + 2U). 

a = 3.219 x 10-6(mol/g)0.5477s-L; p = 2.903; E = -0.4523 

In the case of the experimental data of degradation by ultrasonic irradiation [18], 
the parameters take the values 

a = 2.983 x 10-9(mol/g)1.~566s-1; /3 = 4.000; E = 0.3566 

and the experimental results of degradation by enzymatic attack [ 191 provide 

a = 5.746 x 10-8(mol/g)1~1039s-1; /3 = 4.000; E = 0.1039 

In the latter two cases, /?-values larger than 4 would improve the description of 
experimental data. However, according to Eq. (6), 5 4 has to be fulfilled for 
K(M’,M) 2 0 to be possible for all values of M and M’ . 

Considering the &-values, smaller molecules are preferentially broken in degra- 
dation by acid hydrolysis. On the other hand, larger molecules are more easily 
degraded than smaller ones in degradation by ultrasonic irradiation. In degradation 
by enzymatic attack, there is no significant dependence on the molecular weight. 
According to the positive P-values, the bonds near the ends of a dextran molecule 
break easier than those near the middle. Considering the occurrence of the limit P 
= 4, in two cases Eq. (6) does not seem to be flexible enough to describe the 
dependence on M / M ‘ .  Perhaps exponential terms with respect to M/M’ would be 
more suitable. 

For all three types of dextran degradation, the calculated number-averages 
M,(t) and the calculated nonuniformities U(t)  (based on the given values of a, 0, 
and E )  were compared with the corresponding experimental values. The results are 
presented in Fig. 2 (for 2,) and in Fig. 3 (for U). Because the time tE of the end of 
the degradation experiment was different in the cases considered, the ratio t / t ,  is 
plotted on the abscissa instead of the time t. In the case of degradation by ultrasonic 
irradiation, only experimental CPR values are available. For the sake of uniform 
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1 %  1 

0 0,2 0. I4 0,6 0.8 1 
t l t, 

FIG. 2. Comparison of the calculated (lines) and the experimental (points) time- 
dependence of the number average a, of the molecular weight in degradation by acid 
hydrolysis (-), by ultrasonic irradation ( .  . .), and by enzymatic attack (- . -). 

presentation, these values were converted into U values, presuming a Schulz-Flory 
distribution. 

Figure 2 shows a very accurate description of the experimental number aver- 
ages by the introduced of our approximation method for all three types of degrada- 
tion. On the whole, the description of the experimental values of nonuniformity U 
is also satisfactory (Fig. 3). 

However, in the cases of degradation by ultrasonic irradiation and by enzy- 
matic attack, the agreement of calculated and experimental values of U is not 
quite perfect. The reason is that in both cases the experimental U(t) curve shows a 
maximum, but based on Eq. (6) in U(t),  a maximum cannot occur. In degradation 
by ultrasonic irradiation (tE = 60 minutes), this maximum is reached after a shorter 
time than in degradation by enzymatic attack (tE = 100 minutes). Because of this 
shorter time, there is a relatively large slope dU/dt, the description of which is not 
easy to determine by using Eq. (6). Therefore, the degradation of dextran by ultra- 
sonic irradiation is less perfectly modeled than degradation by enzymatic attack. 
Finding expressions for K(M’,M) which are more flexible than Eq. (6) and, with 

3 t  1 

_ _ o - - - O - - - Q - - ~ - - - - - - - - - - -  

. . . . . . . . . . . . . . . . . . . . . .  A.. 

1 0‘2 0.4 0.6 0.8 0 

. . . . . . . . . . . . . . . . . . . . . .  ......... A.. ........ 

1 0.4 0.6 0.8 0 

FIG. 3. Comparison of the calculated (lines) and the experimental (points) time- 
dependence of the nonuniformity U in degradation by acid hydrolysis (-), by ultrasonic 
irradation (. * . ), and by enzymatic attack (- - -). 
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respect to U(t) ,  allowing for the occurrence of a maximum, is a challenge for the 
future. 

CONCLUSIONS 

1. Assuming a Schulz-Flory distribution with time-dependent parameters, an 
essential simplification in solving the continuous rate equation is achieved. 

2. The developed approximation permits a good description of the exact solu- 
tion in the case of “random scission,” and of the experimental data of dextran 
degradation by acid hydrolysis, by ultrasonic irradiation, and by enzymatic attack. 

3.  The fitted model parameters show that the bonds near the ends of a dextran 
molecule break easier than those near the middle. However, there are essential 
differences between the three types of dextran degradation when the dependence of 
the splitting probability on the molecular weight is considered. 

4. Unfortunately, calculation of the time-dependence of nonuniformity U by 
the developed method does not allow a maximum to occur. Therefore, more flexible 
expressions for the rate function K(M’,M) are needed. 
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